Receptor-mediated internalization of insulin requires a 12-amino acid sequence in the juxtamembrane region of the insulin receptor beta-subunit.
نویسندگان
چکیده
The juxtamembrane region of the insulin receptor (IR) beta-subunit contains an unphosphorylated tyrosyl residue (Tyr960) that is essential for insulin-stimulated tyrosyl phosphorylation of some endogenous substrates and certain biological responses (White, M.F., Livingston, J.N., Backer, J.M., Lauris, V., Dull, T.J., Ullrich, A., and Kahn, C.R. (1988) Cell 54, 641-649). Tyrosyl residues in the juxtamembrane region of some plasma membrane receptors have been shown to be required for their internalization. In addition, a juxtamembrane tyrosine in the context of the sequence NPXY [corrected] is required for the coated pit-mediated internalization of the low density lipoprotein receptor. To examine the role of the juxtamembrane region of the insulin receptor during receptor-mediated endocytosis, we have studied the internalization of insulin by Chinese hamster ovary (CHO) cells expressing two mutant receptors: IRF960, in which Tyr960 has been substituted with phenylalanine, and IR delta 960, in which 12 amino acids (Ala954-Asp965), including the putative consensus sequence NPXY [corrected], were deleted. Although the in vivo autophosphorylation of IRF960 and IR delta 960 was similar to wild type, neither mutant could phosphorylate the endogenous substrate pp185. CHO/IRF960 cells internalized insulin normally whereas the intracellular accumulation of insulin by CHO/IR delta 960 cells was 20-30% of wild-type. However, insulin internalization in the CHO/IR delta 960 cells was consistently more rapid than that occurring in CHO cells expressing kinase-deficient receptors (CHO/IRA1018). The degradation of insulin was equally impaired in CHO/IR delta 960 and CHO/IRA1018 cells. These data show that the juxtamembrane region of the insulin receptor contains residues essential for insulin-stimulated internalization and suggest that the sequence NPXY [corrected] may play a general role in directing the internalization of cell surface receptors.
منابع مشابه
Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region
The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at ...
متن کاملHuman insulin-like growth factor I receptor internalization. Role of the juxtamembrane domain.
Cytoplasmic submembrane domains of the insulin-like growth factor I (IGF-1) receptor ranging from glycine 940 to proline 959 were investigated for their role in endocytosis of the IGF-1 ligand in rat pituitary GC cells stably expressing mutant human IGF-1 receptors. Replacement of each of three tyrosine residues within the juxtamembrane domain reduced the internalization rate (Ke) by 33% (943Y-...
متن کاملThe insulin receptor juxtamembrane region contains two independent tyrosine/beta-turn internalization signals
We have investigated the role of tyrosine residues in the insulin receptor cytoplasmic juxtamembrane region (Tyr953 and Tyr960) during endocytosis. Analysis of the secondary structure of the juxtamembrane region by the Chou-Fasman algorithms predicts that both the sequences GPLY953 and NPEY960 form tyrosine-containing beta-turns. Similarly, analysis of model peptides by 1-D and 2-D NMR show tha...
متن کاملNPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor.
Rapid internalization of the cell surface low density lipoprotein (LDL) receptor requires the first 22 amino acids of the cytoplasmic domain (residues 790-811), which must include an aromatic residue at position 807. In the human LDL receptor, this position is part of a tetrameric sequence, NPVY. A similar tetramer, NPXY (where X stands for any amino acid), is conserved in LDL receptors from si...
متن کاملProtein kinase activity of the insulin receptor.
The insulin receptor is an integral membrane glycoprotein (Mr approximately 300,000) composed of two alpha-subunits (Mr approximately 130,000) and two beta-subunits (Mr approximately 95,000) linked by disulphide bonds. This oligomeric structure divides the receptor into two functional domains such that alpha-subunits bind insulin and beta-subunits possess tyrosine kinase activity. The amino aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 27 شماره
صفحات -
تاریخ انتشار 1990